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Born expansions for Coulomb-type interactions 

F Gesztesy and B Thallert 
Institut fur Theoretische Physik, Universitat Graz, A8010 Graz, Austria 

Received 8 April 1980, in final form 9 September 1980 

Abstract. We prove lower bounds on the radius of convergence of various Born expansions 
associated with partial wave Schrodinger operators hi involving Coulomb plus short-range 
potentials. Our estimates, clearly indicating the high-energy character of these expansions, 
also exhibit the connection between the increase of the radii of convergence with increasing 
energy and the behaviour of the short-range potential at the origin. In the case of a repulsive 
Coulomb potential, we prove bounds on the number of eigenvalues of h, and discuss the 
relation between the absence of bound states of hl and the convergence of Born expansions. 

1. Introduction 

In this paper we concentrate on the Born expansions associated with Hamiltonians 
including long-range potentials like the Coulomb potential. In particular, we consider 
Schrodinger operators hl in L2(0, CO) which are distinguished self-adjoint realisations of 
differential expressions of the type 

d2 I ( I + l ) + a 2 - $  y 
dr= -,+ 2 +-+gV(r) ,  r > 0, I E No, a > 0 ,  y E R, g E C, (1.1) 

dr r r 

where the short-range potential V(r) is a real-valued locally integrable function on 
(0, CO) satisfying appropriate integrability conditions (cf § 2). In the spherically sym- 
metric case considered here, essentially the following two types of Born expansions 
(Taylor series in the coupling constant g) exist: 

(i) the Born expansions for Fl(k, g, r) and tan &(k, g) which are obtained by 
iterating 

00 

pi(k, g, r)=FIo’(k,  r ) -g[  dr’g”l0’(k, r, rf)V(r’)Fl(k, g, r’), k 2 0 ,  (1.2) 
0 

and inserting it into 

(ii) the Born expansions for flf(k, g, r) and exp[2i&(k, g) ] ,  using 
W 

8f (k ,  g, r)=F!”(k,  r ) - g j  dr‘ [jo’(k, r, rf)V(r’)81(k, g, r’), k 2 0 ,  
0 
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and 
oc 

exp[2isl(k, g)] = 1 - dr  V(r)F?’(k, r)Fi(k, g, r), k>0. (1.5) 

Here 
F!” (k, r)  = r(i + 3/2)(k/2)-‘-’’2r1’2~‘+1,2 (kr) 

and the Green functions i jo’(k ,  r, r’) and ;!‘’(k, r, r’) follow from (3.16) and (3.41) in the 
limit y + 0. 

Jost and Pais (1951), considering case (ii), proved a sufficient condition for con- 
vergence at all energies. Subsequently Kohn (1954) investigated cases (i) and (ii). He  
proved sufficient conditions for convergence of the Born expansions involved, and also 
derived lower and upper bounds on the radius of convergence for various energy 
regions. Later on, Zemach and Klein (1958) rigorously demonstrated (for a restricted 
class of potentials) the high-energy character of these expansions by proving con- 
vergence of the Born series for any fixed coupling constant g for sufficiently high 
energies. Their analysis has been generalised by Aaron and Klein (1960) to arbitrary 
space dimensions. The connection between the absence of bound states for the 
potential - IgV(lxl)i and the convergence of all Born expansions for all energies can be 
found in Davies (1959/60), Meetz (1962), Huby (1963) and Bushel1 (1972). A 
discussion of case (ii), including lower bounds on the radius of convergence, appeared in 
Scadron et a1 (1964). Finally, we mention a generalisation of the results of Zemach and 
Klein (1958), due to Faris (1971) who used time decay estimates in the framework of 
time-dependent scattering theory. 

In (1.1) we introduced a terminology especially convenient to describe radial 
decompositions of Hamiltonians in L2(R 3).  Nevertheless, because of the arbitrariness 
of cy E R ,  Hamiltonians in L2(R“)  of the type 

are of course included in our discussion. In treating Schrodinger operators of the type 
(1.1) we split up hl into two parts, hl = hfo) + g V  (in the sense of quadratic forms), and 
interpret the exactly solvable operator hjo’ = -d2/dr2 + [1(1+ 1) + a 2  - i ] / r2+ y/r  as the 
‘unperturbed’ Hamiltonian. This enables one to generalise almost all classical results of 
the short-range case y = 0 by considering hjo’ instead of -d2/dr2+ 1(1+ l ) / r 2 .  

In § 2 we describe the spectral properties of hi for real g. Besides a discussion of the 
continuous spectrum of hi (proposition 3), we also deal with its point spectrum and 
prove bounds on the number of bound states of hi in the repulsive case y ~ 0  
(propositions 1, 2). One of these bounds (proposition 2) is a straightforward generalis- 
ation of the corresponding short-range ( y  = 0) result due to Bargmann (1952). In the 
first part of § 3 we study case (i), the Born expansions for Fl(k, y, g, r)  and 
tan[&(k, y, g)-S!”(k, y ) ]  (Sjo’(k,  y )  denote the phase shifts corresponding to g = 0) 
associated with our Hamiltonian hi (i.e. in the presence of an additional long-range 
potential of the type ( a 2  - i ) / r2  + 7/2). Following Kohn (1954), we derive lower bounds 
on the radius of convergence of the Born series in case (i) for several energy regions 
(propositions 4, 5). Proposition 6, which is new also in the short-range case y = 0, 
connects the behaviour of V(r) in a neighbourhood of the origin r = 0 with the increase 
of the radius of convergence in the high-energy limit. Incidentally, the estimate of 
proposition 6 proves, for sufficiently high energies, the convergence of the Born series 
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for any fixed coupling strength g. In the special case, where V(r) is integrable on (0, CO), 

it is also possible to prove in the high-energy limit an asymptotic expression for the 
radius of convergence identical to that obtained by Kohn (1954) for the short-range 
case y = 0. The second p8rt of § 3 deals with analogous results for the case (ii), i.e. for 
the Born expansions of FL(k,  y ,  g, r) and exp{2i[&(k, y, g)-Sjo’(k, y ) ] } .  

2. Spectral properties of hl 

This section is dedicated to a detailed description of the spectra of the Hamiltonians hr 
and of the regular and irregular solutions associated with them. 

Let V(r) be real-valued, V(r) E L:,,(O, a) and 

jRm dr I V(r)l joR dr r I V(r)j < a, for some R > O .  (2.1) 

In the Hilbert space L2(0, a) we introduce the operator hi by (cf (1.1)) 

(hrf)(r)  = (difxr), 

D(hi) = {flf’ E A d o ,  a); f ( o + )  = 0; f, f’, dif E L2(0, 00)). 
(2.2) 

Here Al0,(0, 00) denotes the set of locally absolutely continuous functions on (0, a). If 
g E R, then hi is self-adjoint (cf the discussion in Gesztesy et a1 1980). In the special case 
g = 0 we denote the resulting ‘unperturbed’ operator by hio). 

Next we introduce for E s 0, y 2 0 and E 5 0, y E R regular and irregular solutions 
of the equation (cf (1.1)) 

(di -E)$(r)  = 0, r > 0 ,  l € N 0 .  (2.3) 

Regular solution t 

(2.4) 

Irregular solution 
m 

GdE, Y, g, r) = Gjo’(E, Y ,  r ) + g l  dr‘ gjo’(E, Y, r, r ’ )V(r’Ei(E,  Y, g, 1’1. ( 2 . 5 )  
r 

Here Fie' and GI“’ are regular and irregular solutions for the unperturbed Hamiltonian 
hjo’ in the case g = 0 (cf the Appendix). They are given by the following expressionst. 

E c O ,  y 3 0 :  

Fio’(E, y,  r) = rh exp(-J-Er)lFl(A + y12J-E; 2A; 2J-Er) ,  

G ~ ) ( E ,  y, r) = ~ ( ~ A ) - ’ I - ( A  + y12J-E) (2.6) 
x (-4E)h-1’2rh exp(-J-Er)U(A + yI2d-E; 2A ; 2 J z r ) ,  

t We always keep (Y > 0 and suppress the a dependence of FI, GI, gjo’ etc. 
$ In equation (2 .6 )  l F l ( a ;  b ;  z )  and U ( a ;  b ;  z )  denote the regular and irregular confluent hypergeometric 
functions respectively (Abramowitz and Stegun 1972). Note that, in contrast to Gesztesy et al(1980), we use 
different definitions for Fy’ and Gy’ so that the limits E -* 0 and y + 0 may be performed successively (cf the 
Appendix). 
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where 

A = $ + ( 1 2 +  1 + L Y ’ ) ~ ’ ~ .  

EaO,   ER: 
Fjo’(E, y, r ) =  rh exp(-iJEr)lFl(A - iy /2JE;  2A; 2iJEr),  

Gio’(E, y, r) = r(2A)-’r(A - iy/2J~)(4E)”-”’  exp[i.rr(A - 1/2)]rA 

xexp(-i&r)U(A -iy/2&; 2 A ;  2iJEr). (2.7) 

The unperturbed Green function gj0’(E, y, r, r’) is defined through 

gjo’(E, y, r, r’) = Fjo’(E, y, r’)Gj0)(E, y, r)-Fjo’(E, y, r)Gjo’(E, y, r’). (2.8) 

It is simple to rewrite (2.4) and (2.5) to obtain 

and 

where we have abbreviated? 

and$ 

Fjo’ (E, r’)Gjo’(E, r), 
Fj0’ (E, r)G)”(E, r’), 

r’ G r, 
r’ 3 r. iio)(~, y, r, r‘) = { 

(2.11) 

(2.12) 

Equations (2.4) and (2.5) for E G 0, y 3 0 and E 2 0, y E R  are uniquely solved by 
iteration provided V(r) fulfils the conditions 

if E < 0 ,  y 2 0  and E>0,   ER, 

j o m d r r l V ( r ) l < ~  if E =  y = O .  

(2.13) 

(2.14) 

(2.15) 

For a survey of estimates for FL and Gl we refer to the Appendix. 
Now we turn to the point spectrum of hi for g real. For y < 0 there are obviously 

infinitely many bound states, hence we restrict our attention to the case y 3 0. 
Let us denote by nl(gV; y ;  E s E o ) ,  g a0, the number of bound states of hl with 

bound state energy less than or equal to Eo. We also introduce V+(r)= 

T W(G,  F )  = GaF/ar - FaG/ar denotes the Wronskian of G and F. 
$ From now on we suppress the y and g dependence whenever possible. 
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[I V(r)l i V ( r ) ] / 2  and exclude the trivial case where V-(r) = 0 ae on (0, a). As a first 
result we state the following proposition. 

Proposition 1. Let Eo < 0, y a 0 ,  g > 0 and suppose I,“ dr [ r / ( l  + r)]l  V(r)l< W. Then 
P 

n l ( g V ;  y ;  E s E o ) < r ( 2 A ) - ’ r ( A  + y / 2 J - E 0 ) ( - 4 ~ o )  h - 1 / 2  g Jo d r r 2 A  exp(-2J-Eor)  

x l F l ( A  + y / 2 J z o ;  2A ; 2J/-Eor)U(A + y / 2 J z ;  2A ; 2 J - E , r ) ~ - ( r ) .  

(2.16) 

Proof. Let V d 0. The infinitesimal form-boundedness of V relative to hio) implies 
continuity and monotonic decrease of the eigenvalues with respect to the coupling 
constant g (Simon 1971, Reed and Simon 1978). Thus (following Schwinger (1961) 
and Birman (1966)) n , ( g V ;  y ;  E s Eo) is the number of positive K G 1 for which 

[(hio’ + ~ ( g V ) ) r C l l ( r )  = Eo@L(r) (2.17) 

has a solution Cc, E D(hjo’ + K g V ) .  (Here hjo’ + K g V  denotes the form sum of hjo’ and 
K g V . )  This implies $!((Eo, g )  = 0 and thus 

which is equivalent to 

4 = KgjV/1’2(h(io) -Eo)-11V\1’2q5. 

(2.18) 

(2.18’) 

Under the hypothesis on V(r),  1 V]1’2(h/0’ -Eo)-’\ 
1979) and we finally obtain 

I/glV\1’2(h!o’ - E o ) - l ~ V ~ ’ ’ z ~ ~ l  = g j  dr2jo’(Eo, r, r ) l V ( r ) l  

= f K,’> K ,  z n ( g V ; y ; E s E o ) ,  

is trace class (Reed and Simon 

33 

0 

(2.19) 

where K ; ’ ,  n = 1 , 2 ,  3 ,  . . . are the eigenvalues of glV/1’2(h!o’ -Eo)”(VI”~. If V does 
not obey V G 0, we use the min-max principle (Reed and Simon 1978, Thirring 1979) 
to conclude that 

-1  

n = l  { n l K n s l )  

n i ( g V ;  y ; E s E o ) s n l ( - g V - ;  y ;  E S E o ) ,  

completing the proof. 

In order to compare with the short-range case y = 0, we present a corollary. 

Corollary 1. Let Eo < 0, y = 0 ,  g > 0 and assume d r  [ r / ( l  + r )] l  V(r)l < W .  Thent 

f Here I o ( z ) ,  K p ( z )  denote the modified Bessel functions of order p (Abramowitz and Stegun 1972). 
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To estimate the total number of bound states (there are no positive-energy bound states 
by proposition 3) we give the following proposition. 

Proof. Let V s 0. To include zero-energy bound states we note that 

(2.21) 

(2.22) 

(2.23) 

since & (E = 0, g) = 0 in this case. So, following the proof of proposition 1, we obtain 
(2.21). For general V we note that the infinitesimal form-boundedness of V with 
respect to h io’ implies 

where h ;  denotes the form sum of hjo’ and -gV-, and E(. . , ,o~(A) represents the 
non-positive spectral projection of a self-adjoint operator A.  Thus 

ni(gV; y ;  E 0) nl(-gV-; y ;  E c O), 

finishing the proof. 

The corresponding short-range result ( y  = 0) reads as follows (Bargmann 1952, 
Newton 19621. 

Corollary 2. Let y = 0, g > 0 and assume j,“ dr r /  V(r)l< CO. Then 

ni(gV;O;ESO)<---  iom dr rV-(rj. (2.24) 
2h -1 

Remark 1. (a) For a family of optimal bounds for nl(gV; 0; E s 0), including (2.24) as a 
special case, see Glaser et a1 (1976, 1978); for a review of other methods compare 
Simon (1976) and Reed and Simon (1978). A discussion where V(r) is replaced by a 
nonlocal separable rank-one (Yamaguchi) potential can be found in Van Haeringen et 
a1 (1977). (b) In the short-range case ( y  = 0) it is well known that n i ( g V ;  0; E 0) 
increases like g1’2 if g tends to infinity (Chadan 1968, Chadan and Mourre 1969, Martin 
1977, Grosse 1980). The presence of an additional repulsive Coulomb-type potential 
(cu2-a)/r2 + y/r, y > 0 decreases the number of bound states, but in the strong coupling 
limit g + CO this effect should become more and more negligible. In fact, using methods 
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employed in Chadan and Mourre (1969), it is simple to prove 

lim g - 1 / 2 n l ( g ~ ;  y ;  E 0) = - dr I V(r)11'2, Y 2 0 ,  (2.25) 
8-m rfl 

if V(r) G 0 and V(r) E L1/2(0, CO). 

Having discussed the point spectrum ap(hi) to some extent, we finally concentrate on 
the remaining parts of a(hl ) .  

Proposition 3. For all 1 E No, a > 0, y E R, g E R, the spectrum of hi is simple and 
bounded from below. Its singular continuous part is empty, no positive eigenvalues 
occur, and the essential spectrum is purely absolutely continuous: 

For a proof of proposition 3 compare Weidmann (1967) (cf also Gesztesy et a1 (1980) 
where a more general result including existence and completeness of various Mprller 
operators is discussed). 

Remark 2. (a) For y>O, proposition 2 proves the finiteness of a,(hl) for potentials 
V(r) which are, roughly speaking, of order O(Y-~ '~- ' ) ,  E > 0 as r + CO. But the explicit 
structure of hl shows that there are actually finitely many eigenvalues if gV(r )>  
cr-l-', E > 0, r 3 R for some R > 0. The apparent border line V(r) = O(r-3'2-') as 
r + CO (instead of V(r) = O(r-'-') as r + CO) comes from the fact that we used the trace 
norm 1 1  I l l  of the integral operator with kernel gl V(r)l g l  (0, r, r ' ) /  V(r')l-1'2V(r') in 
the proof of proposition 2. The class of potentials yielding finitely many eigenvalues is 
enlarged successively if further norms 1 1  l i p ,  p = 2,3 ,  . . . are taken into account. (b) Most 
of the results in this section (e.g. (2.16), (2.20), (2.21) if y > 0, proposition 3) and in the 
following are also valid for a = 0 if D(h1) and the assumptions on V(r) in (2.13)-(2.15) 
are modified appropriately. 

1 1 2  A ( f l )  

3. Convergence of Born expansions 

After introducing the concept of phase shifts Sl(k), we derive various lower bounds on 
the radius of convergence of the Born series for tan(& -Si"'), exp[2i(Sl - S i " ) ]  and 
related quantities. 

Since E 2 0 throughout this section we introduce the variable k = &and redefine FI 
and Gi as follows;: 

k 3 0 ,  (3.1) 

x U(A -iy/2k; 2h ;  2ikr), k 2 0 ,  (3.2) 

F'fl' I (k, y , r ) = r h  e-ikrlFl(A - i y / 2 k ; 2 A ; 2 i k r ) = F i o ' ( - k ,  y,r) ,  

Gjo'(k, y ,  r) = T(2A)-'r(A - i ~ / 2 k ) ( 2 i k ) ~ ~ - I r ~  e-ikr 

k 2 0 ,  (3.3) 

t In order to simplify the notation we use the same symbols F,, GI, gj"' etc after E has been replaced by k .  
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where Al(k)  and B, (k )  are defined by 

~ ~ ( k )  = 2 1 - A k - A r ( 2 ~ ) l r ( ~  +iy/2k)/-l  ewr’4k, 

B f ( k )  = l /kAl(k)  = (2k)”-’r(2A)-’/r(h +iy/2k)le-“”4k,  ER. (3.4) 

Then we have 

Insertion of (3.1)-(3.3) into (3.5) then shows 

(3.10) 

Next we introducet 

exP{2i[~l(k, 7, g)-SiO’(k, r)l}= pl ( -k ,  y, g ) / . % ( k  y, g ) ,  

where 

~ f “ ( k ,  y )  = arg r[$+ ( 1 2  + I + a2)l’’+ iy/2k]+$rr[l+ 1 /2  - ( 1 2  + I + 

k > 0 ,  (3.11) 

=argr(A + iy /2k )+$r r ( l+ l -h )  (3.12) 

is the phase shift associated with hjo’ (cf the Appendix). Since 

/ 4 ( k ) -  11 = o(1) ask+oo,  (3.13) 

we choose 

Sl(00) = $ ~ ( l  + 1 - A )  = $.ir[l+ i- (1’ + I +  ~r’)”’] (3.14) 

in order to guarantee uniqueness of S l ( k ) .  (For a detailed discussion of the high-energy 
behaviour of S l ( k )  compare Gesztesy et a1 1980.) With these definitions, the asymptotic 

t Note that in general @,( -k ,  y, g )  f @ i ( k ,  y, g )  since g E C. 
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behaviour of Fl(k, r)  and Gl(k, r )  reads 

1 Fi(k, r) - 9 l (  k) exp{i[& (k) - 8;’’ (k)]}Ai (k)  sin (kr - - ln(2ky) - -+ S l ( k ) )  1 = o( l ) ,  
Y / IT 

2k 2 

for k > 0, r + 03, 

lGi(*k, r ) - B l ( k )  exp T i  kr--ln(2kr)--+G!0’(k))] Y / IT  1 = O ( l )  [ ( 2k 2 

for k > 0 ,  r + a .  

We further introduce 

iio’ (k, r, r I ) - - g l  *(o) (k, r, r’) + i- B l ( k )  Fie) (k, r)F!” (k, r’) = Re &”(k, r, r’), 
Al(k) 

and note that &”(k, r, r‘) is real. Then 

Fi(k g, r )  = k S O ,  
2 

9i(k g)+s l ( -k ,  g)  
F/(k, g, r), 

satisfies 

Fl(k, g, r )=Fjo) (k ,  r)-g[ dr’&”(k, r, r’)V(r’)Fl(k, g, r’), 
m 

k 2 0 ,  
0 

and from 

(3.15) 

k a 0 ,  

(3.16) 

(3.17) 

(3.18) 

(3.19) 

m 

k > 0 .  (3.20) tan[&(k, g) -8!”(k)] = 7 

Iterating (3.18) and inserting it into (3.20) then yields the Born expansions (Taylor 
series in g)  for Fl(k, g, r )  and tan[&(k, g)-SjO’(k)]: 

-g dr  V(r)Fio’ (k, r)Fl(k, g, r ) ,  
kAi(k)  o 

(3.21) 

(3.23) 
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From (3.17) and the fact that Fl(*k, y, g )  and Fi(k, y ,  g, r )  are entire functions of g, we 
infer that for fixed k,  1, CY, y the radius of convergence for both Born expansions (3.21) 
and (3.23) is given by the absolute value of that zero of 

which is closest to the origin g = 0. We denote this zero simply by gi (k ,  y )  (of course it 
depends on cy as well). 

In the following we discuss several methods of obtaining a lower bound on the radius 
of convergence l&(k, y) l .  We first investigate the case k = 0 and y 3 0. 

Proposition 4. Let k = 0. Assume 

and JOm dr r /  V(r)l< 00 if y = 0. 
r 

if y>O 

Proof. We first show that &(O, y )  is necessarily real for y 2 0. Since 9 l ( O ,  gl) = 0, the 
functions Fl(O, &, r )  and Gi(O, &, r )  are linearly dependent, which in connection with 
the estimates (A20), (A22), (A25) and (A27) implies 

h ( r )  = I v(r)1”2Fl(0, i h  I )  E L2(0, a) 

and 

From (A10) one infers that ii”‘(0, y, r, r’) is real for y 2 0  which proves that g‘l(0, y )  is 
real for y 2 0. From 

d FIO’(0, r )  1 
for all r 2 0, y 3 0, 

dr(G{’’(O, r i )  =[Gjo’(O, r ) ] 2 Z 0  

one shows 

Ig!”(O, r, r’)I SFI” (0, r)Gjo’(O, r’)  for all r, r’ > 0, y 2 0. (3.27) 

Insertion of (3.27) into (3.22) yields (&”(O, r, r ‘ )  = g!”(O, r, r ‘ )  if y 3 0) 
m 

lA,,,l(O, r ) /  SF!”  (0 ,  r ) (  dr‘ Fjo’ (0, r’)Gio’(O, r ’ ) /  V(r‘)I),,, (3.28) 
0 

which implies that 

(3.29) 

Thus (3.21) converges for any g such that lg/ < [J’,” drFjo’ (0, r)Gjo’(O, r ) /  V(r)I]-’. In 
the short-range case y = 0, (3.26) is due to Jost and Pais (1951) (see also Kohn 1954). 
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Remark 3. The proof of proposition 4 shows that for y 0 the Born series for Rl(O, g, r) 
at zero energy converges whenever *gV(r), g E R is too weak to support a bound state 
(or zero-energy resonance). In other words, the,expansion (3.21) converges for g in a 
circle with centre g = 0 up to the nearest (real) zero of 4 ( 0 ,  g)  = 0. On the other hand, if 
one compares the estimate (3.26) with proposition 2 and corollary 2, one infers the 
weaker statement that the Born series (3.21) is certainly convergent if - lgV(r)/ is too 
weak to support a bound state (for related results in the case y = 0 compare Davies 
1959/60, Meetz 1962, Huby 1963, Bushel1 1972, Amrein et a1 1977). 

Now we turn to the case k > 0, y E R .  

Proposition 5. Let k 2 ko > 0, y E R ,  and JOm dr [ r / ( l  + kor)]l V(r)l< 00. Then 

(3.30) 

where 

Proof. With the help of (A16) and (A18) one arrives at 

r t  m r 
lAH,~(k, r ) l S a A , , ! k o ) ( l + k r ) h ( ~ * , , ( k O )  0 d r t w l V ( r t ) l ) n ,  kZko>O,  

(3.32) 

which proves (3.30). 

It is intuitively clear that the radius of convergence of the Born expansions (3.21) 
and (3.23), i.e. l g ~ ( k ,  y) l ,  should increase when k becomes larger and larger. This fact is 
actually confirmed by the following proposition 6, which also indicates how the small-r 
behaviour of V(r) influences the large-k behaviour of I&(k, ?)I. 

Proposition 6. Suppose J," dr r@l V(r)l< 00 for some R > 0 and some 0 s p s 1. Then 

k 2 ko>0, E R. 

Proof. From proposition 5 we obtain 

(3.33) 

R 

P[&,,(ko)(lo drr'lVV(r)l+k-@jRmdr lv(r)l)]-'. 

Equation (3.33) shows that even for p = 1, gl(k, y )  -j a as k +CO since R may be chosen 
arbitrarily small. 
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In the special case p = 0 one can derive an asymptotic formula for lgi(k, y)i if k tends 
to infinity (for y = 0 this has been done by Kohn 1954). 

Proposition 7. Assume 5," drl V(r)l <CO and 5," dr V(r) f 0. Then 

Proof. After iterating (3.5) and inserting it into (3.9), one infers 

4 ( - k ,  Y, g)  = C g"G,i(k, Y), 
a2 

l l = O  

(3.34) 

(3.35) 

k a k o > O .  (3.37) 

With the help of the asymptotic relations (A14) and (A15) and the Riemann-Lebesgue 
lemma one concludes 

1 1 "  
lim k"C,,i(k, y ) = - ( - l  n !  2i 0 dr Vir))". 
k - o o  

(3.38) 

Next we decompose 

where 

(3.40) 

If g depends on k such that lg(k)l G 2~k/l5: dr V(r)l, then 

holds. Thus lRA(k, g(k) ) l< i  for k 3 kl > 0 and /g(k) /  s27rklll; dr V(r)l for kl large 
enough. Thus there exists for all fixed k a kl a &(k)  with O s  l$ i (k) /  <27rk//5; dr V(r)l 
such that [ 4 ( k ,  gi(k))+Fi(-k,  &(k))]  = 0 for all k 2 kl. Since by definition 

I&(k)I s Iii(k)/ s 2 ~ k / I J , "  dr V(r)I, 
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we obtain 

00 
= lim cos( i I ( k )  lo dr V(r)) = 0, 

k-00 

which proves 

l ir(k)I = rk / I j r  dr v(r) l  + o ( k )  as k + w .  

Note the close analogy of the high-energy behaviour of lgl (k) l  and [S l (k ,  y, g)-  
Sj0’(k, y)] as exhibited in propositions 6 and 7 above and propositions 4 and 5 in 
Gesztesy et a1 (1980). The additional integrability condition j,” dr r’/ V(r)( <cc leads, 
for k + 00, to an increase like kl-’, 0 s p s 1 for l&(k)l ,  resp. decrease like kP-‘ for 
[ S / ( k ,  7, g)-SIO’(k, r)l. 

Now we define 

(3.41) 

(3.42) 

m 

El(k, g, r ) = F i o ’ ( k ,  r ) -g jo  dr‘[jo’(k ,  r, r ‘ ) V ( r ’ ) E / ( k ,  g, r ’ ) .  (3.43) 

With the help of (3.19) one obtains 

2ig 
exp{2i[Sl(k, g)-Sjo’(k)]}= 1 - 7 1  dr V(r)Fio’(k, r);I(k, g, r ) .  

Iterating (3.43) and inserting it into (3.44) then yields the Born expansions for Fr(k, r )  
and exp{2i[Sr(k) - Sjo’(k)]}: 

m 

(3.44) 
k A r ( k )  o 

(3.45) 

(3.47) 

(3.48) 
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From (3.42) it is clear that for fixed k, I ,  a and y the radius of convergence for both Born 
series (3.45) and (3.47) is given by that zero of 

%(k, Y, g)=O (3.49) 

which is closest to the origin g = 0. We denote this zero by fl(k, y ) .  

of convergence, i.e. [ i l ( k ,  y) l ,  can be proved. 

k =0 ,  y ~ 0 :  

Since Hl(k, y )  and i l (k ,  y )  coincide for k = 0, y 2 0, proposition 4 is valid for iL(0, y )  as 
well. 

k > 0, y E R: 
Propositions 5 and 6 remain valid for i ( k ,  y )  if EA,,(ko) of (3.31) is replaced by 

In the following we briefly discuss several cases where a lower bound for the radius 

Since 

and g”jO’(k, r, r’) is real, we obtain - 
f,i,y(ko)> c*,,(ko) for all ko > 0. 

There is no complete analogue of proposition 7 for i l(k,  y ) ;  instead of proposition 7, 
we now have the following. 

Proposition 8. Assume JOm dr  1 V(r)l< 00 and Iom dr  V(r) # 0. Then 

lim i l (k ,  y ) /k  =CO,   ER. 
k - m  

Proof. Let M > 0. Since 

there is a kl  > 0 such that 

for k z kl and lg/ S M k .  

Suppose Iil(k)l S M k .  Then Fl(k, i l ( k ) )  = 0 implies 

(3.51) 

a contradiction. Thus Iil(k)l/k > M  and since M was arbitrary, (3.51) is proved. 



Born expansions for Coulomb-type interactions 653 

a d o  

a z o  EGO, y a 0  ea0 7-0, 

This result (in the short-range case y = 0 due to Kohn (1954)) shows that in the 
high-energy limit L ( k )  7 g“l(k) if V(r) E L’(0, CO). 

Finally we note that it is simple to estimate the truncation error (Kohn 1954, 
Manning 1965), i.e. the difference between tan(& - 6:”) (or exp[2i(Sl - SjO’)]) and the 
first N terms of the associated Born series (3.23) (or (3.47)). For example, using (3.32) 
we obtain 

ltan[S:(k, g)-SiO’(k)l- Il=l C g“B,,,i(k)l n = N + I  C IgI”lB,,i(k)l 
N m 

(All y - 0 ,  

and similarly for the other cases. 

I y - o +  



654 F Gesztesy and B Thaller 

Asymptotic behaviour 

( A 7 )  
( k ,  y, r )  - A l ( k ) s i n  kr--ln(2kr)--+Si0’(k)),  Y /IT  ER, 

( 2k 2 

k > O  F(0) 
r - rm 

k > O  Y IT 
G i O ’ ( i k ,  y ,  r )  - B l ( k ) e x p  [ T i  ( k r - - l n ( 2 k r ) - - + 6 ! o ’ ( k ) ) ] ,  2k 2  ER, (AS) 

where 

A l ( k )  = 21-Ak-Ar(2h)(T(A +iy/2k)l-’ 

r+m 

B l ( k )  = l / k A l ( k )  = (2k)”-’r(2h)-’/r(h +iy/2k) l  Y E R ,  ( A 9 )  

Y 3 0 ,  
lim B l ( k ) / A l ( k )  = lim l / k A : ( k )  = [ O’ 
k-0, k+O+ y I Z h  -lr(2A )-2, Y s o ,  
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r > O  

Gjo’(k, y, r) - 2 - ’ ~ ~ / ~ r ( A  +b)-1(k/2)A-1exp{-i[kr+~.rr(l-A)]}, Y E  R.  (A15) 
k +cc 

Estimates 

and analogously for gjo’(k, y, r, r’), gjo’(k, y, r, r’) and [!”(k, y, r, r‘); we only have to 
replace cA,,(ko) by appropriate constants tA,,,(k0), Clh,y(ko) and fA,,,(k0). 

replacing c,,,? by 
(3.7) one obtains the estimates 

(A17) holds for ~ ~ ” ( 0 ,  y, r, r’) as well. After iterating (3.5) and 
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